News:

SMF - Just Installed!

Main Menu
Menu

Show posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.

Show posts Menu

Topics - neumannrf

#1
Hello everyone!

I noticed that although one can provide a list of reals as input to ExternalPressure, effectively simulating a full isotherm curve in a single run, the same is not true when it comes to ExternalTemperature.

Despite of what the RASPA manual says

  • ExternalTemperature [list-of-reals]
    The external temperature in Kelvin for each system. Because the system is in contact with this imaginary reservoir the average temperature of the system can be controlled. Default: 298K.
  • ExternalPressure [list-of-reals]
    The external pressure in Pascal for each system. Because the system is in contact with this imaginary reservoir the average pressure of the system can be controlled.
the temperature parsing code does not have the while loop to read the list of real numbers representing the temperature. See here: https://github.com/iRASPA/RASPA2/blob/master/src/input.c#L2171-L2193.

Do you know of an alternative way to run a full isobar curve in a single run?
#2
Hello everyone! Happy holidays!

I have been using RASPA for the past few months, and recently I started incorporating the charge equilibration feature in my simulation pipeline. Initially, everything went fine, but then I started having problems.

When the ChargeFromChargeEquilibration option is set to yes, the simulation crashes with a Segmentation Fault for some (but not all) CIF files.

One example of a CIF file that leads to a crash is TER.cif from the Database of Zeolite Structures: https://asia.iza-structure.org/IZA-SC/cif/TER.cif.

The simulation.input file is as simple as
SimulationType                  MonteCarlo
NumberOfCycles                  0
Framework                       0
FrameworkName                   TER
UnitCells                       3 2 2

ChargeFromChargeEquilibration   yes
ChargeEquilibrationPeriodic     yes
ChargeEquilibrationEwald        yes
SymmetrizeFrameworkCharges      no


The purpose of this MonteCarlo simulation is simply to create a new CIF file containing a 3x2x2 supercell with P1 symmetry.

To help with debugging, I recompiled RASPA v2.0.39 with CFLAGS="-w -ggdb -O0" and executed

gdb ~/RASPA2-2.0.39/bin/simulate

(gdb) run
Starting program: ~/RASPA2-2.0.39/bin/simulate
Program received signal SIGSEGV, Segmentation fault.
0x00007ffff6492e18 in __strcpy_sse2_unaligned () from /lib64/libc.so.6

(gdb) bt
#0  0x00007ffff6492e18 in __strcpy_sse2_unaligned () from /lib64/libc.so.6
#1  0x00007ffff718e543 in WriteFrameworkDefinitionShell (string=0x7ffff7bff6f8 "initial") at framework.c:2103
#2  0x00007ffff793de5e in run (inputData=0x408910 "simulation.input", inputCrystal=0x408930 "",
    raspaDir=0x7fffffffd8cb "~/RASPA2-2.0.39/", stream=false) at run.c:101
#3  0x00000000004013e1 in main (argc=1, argv=0x7fffffffd398) at main.c:106

(gdb) frame 1
#1  0x00007ffff718e543 in WriteFrameworkDefinitionShell (string=0x7ffff7bff6f8 "initial") at framework.c:2103
2103         strcpy(symbol,PseudoAtoms[Type].ChemicalElement);

(gdb) p Type
$2 = -415391835

(gdb) p PseudoAtoms[Type].ChemicalElement
Cannot access memory at address 0xffffffce7b817de4


The source of the Segmentation Fault seems to be that we are trying to access the PseudoAtoms array at a negative index (Type = -415391835), which does not exist. This occurs at https://github.com/iRASPA/RASPA2/blob/master/src/framework.c#L2103.

So I investigated further why/where the Type index variable was set to a negative value and found it at https://github.com/iRASPA/RASPA2/blob/master/src/framework.c#L2101.

(gdb) p CurrentSystem
$3 = 0

(gdb) p CurrentFramework
$4 = 0

(gdb) p i
$5 = 0

(gdb) p Framework[CurrentSystem].Atoms[CurrentFramework][i].Type
$6 = -415391835

gdb) p Framework[CurrentSystem].Atoms[CurrentFramework][i]
$14 = {
    "Type": -415391835,
    "Charge": 0.10504292071040217,
    "CFVDWScalingParameter": 0.60642472553108762,
    "CFChargeScalingParameter": -0.79514090088772649,
    "CFStoredScalingParameter": 0.99604382482586074,
    "Modified": 159528,
    "OriginalType": -1078542400,
    "CreationState": -845529396,
    "AssymetricType": 1068764949,
    "temp": 0.99692550651848566,
    "Position": {
        "x": 0.42480330804058136,
        "y": 0.9052856728556895,
        "z": -0.13602553641904541
    },
    "AnisotropicPosition": {
        "x": 0.99070533128772031,
        "y": 0.93363353366682034,
        "z": -0.35822956998662936
    },
    "ReferencePosition": {
        "x": -0.73270495495271304,
        "y": -0.68054643411580806,
        "z": 0.9831752294314593
    },
    "ReferenceAnisotropicPosition": {
        "x": 0.18266490695368287,
        "y": 0.74724584781165182,
        "z": 0.6645476980083872
    },
    "RattleReferencePosition": {
        "x": 0.99913704083225319,
        "y": -0.041535209605439771,
        "z": 0.93363353366682034
    },
    "Velocity": {
        "x": -0.35822956998662936,
        "y": 0.74724584781165182,
        "z": 0.6645476980083872
    },
    "ReferenceVelocity": {
        "x": 0.99913704083225319,
        "y": -0.041535209605439771,
        "z": 0.93363353366682034
    },
    "Force": {
        "x": -0.35822956998662936,
        "y": 0.74724584781165182,
        "z": 0.6645476980083872
    },
    "ReferenceForce": {
        "x": 0.99913704083225319,
        "y": -0.041535209605439771,
        "z": 0.93363353366682034
    },
    "RattleGradient": {
        "x": -0.35822956998662936,
        "y": 0.74724584781165182,
        "z": 0.6645476980083872
    },
    "ElectricField": {
        "x": 0.99913704083225319,
        "y": -0.041535209605439771,
        "z": 0.93363353366682034
    },
    "ReferenceElectricField": {
        "x": -0.35822956998662936,
        "y": 0.75562487546411949,
        "z": 0.65500461645688624
    },
    "InducedElectricField": {
        "x": -0.50000000000000122,
        "y": -0.86602540378443804,
        "z": -0.50000000000000122
    },
    "InducedDipole": {
        "x": -0.86602540378443804,
        "y": -0.50000000000000122,
        "z": -0.86602540378443804
    },
    "HessianIndex": {
        "x": 11,
        "y": -1075838976,
        "z": -396866395
    },
    "HessianAtomIndex": -1075071366,
    "Fixed": {
        "x": -1725695833,
        "y": -1075481023,
        "z": 1040166342
    }
}


I notice that both Type and OriginalType are negative, but AssymetricType is positive.

I have read here several times that is typically something in the CIF files that generates these Segmentation Faults. I also agree that is probably easier to fix the non-standard CIF rather than implementing safeguards in the code to deal with rare situations. I hope that I was able to pinpoint the issue well enough to make it easier for the experts identify its origin. I also posted this as an issue in the RASPA Github repository for proper documentation.

Is there anything we can do (preferably) to the CIF file (otherwise, to the code itself) to prevent this Segmentation Fault from happening?
#3
Hi everyone!

The RASPA documentation does not mention CutOff, even though that is the most common cut-off radius used in the input files in the Examples folder.

  • What does 'CutOff' mean?
  • Are there cut-off radius parameters that no default value, i.e. the have to be defined every time?
  • What are the default values of each 'CutOff____' parameter?

Having this in the documentation could avoid overspecification in the input file.