2
« on: September 19, 2018, 03:12:25 PM »
Hi Prof. Dubbeldam,
I'm using raspa for hydrogen adsorption simulation in ZIF-8, I had edited the input file and force field file of MOF-5 given in the examples for the using ZIF-8 (lennard jones parameters are also changed according to ZIF-8) as adsorbate . After running the simulation i got high adsorption capacities of hydrogen than reported in literature, it happened for 77K and 300K. I would like to know what might be the problem in this simulation.
[b]My input file [/b]
SimulationType MonteCarlo
NumberOfCycles 50000
NumberOfInitializationCycles 1000
PrintEvery 2000
Forcefield GenericMOFs1
Framework 0
FrameworkName ZIF-8
UnitCells 1 1 1
HeliumVoidFraction 0.484279
ExternalTemperature 300
ExternalPressure 5e5 10e5 15e5 20e5 30e5 40e5 50e5 60e5 10e6 20e6
Component 0 MoleculeName H2
MoleculeDefinition TraPPE
TranslationProbability 1
ReinsertionProbability 1
SwapProbability 1
CreateNumberOfMolecules 0
I edited only forcefield mixing.def file and left forcefield and psuedo atoms.def file as it is
Edited force field is
# general rule for shifted vs truncated
shifted
# general rule tailcorrections
no
# number of defined interactions
55
# type interaction, parameters. IMPORTANT: define shortest matches first, so that more specific ones overwrites these
O_ lennard-jones 30.19 3.12
N_ lennard-jones 34.72 3.26256
C_ lennard-jones 52.84 3.4299
F_ lennard-jones 36.4834 3.0932
B_ lennard-jones 47.8058 3.58141
P_ lennard-jones 161.03 3.69723
S_ lennard-jones 173.107 3.59032
Cl_ lennard-jones 142.562 3.51932
Br_ lennard-jones 186.191 3.51905
H_ lennard-jones 22.14 2.57
Zn_ lennard-jones 62.3992 2.46155
Be_ lennard-jones 42.7736 2.44552
Cr_ lennard-jones 7.54829 2.69319
Fe_ lennard-jones 6.54185 2.5943
Mn_ lennard-jones 6.54185 2.63795
Cu_ lennard-jones 2.5161 3.11369
Co_ lennard-jones 7.04507 2.55866
Ga_ lennard-jones 208.836 3.90481
Ti_ lennard-jones 8.55473 2.8286
Sc_ lennard-jones 9.56117 2.93551
V_ lennard-jones 8.05151 2.80099
Ni_ lennard-jones 7.54829 2.52481
Zr_ lennard-jones 34.7221 2.78317
Mg_ lennard-jones 55.8574 2.69141
Ne_ lennard-jones 21.1352 2.88918
Ag_ lennard-jones 18.1159 2.80455
In_ lennard-jones 301.428 3.97608
Cd_ lennard-jones 114.734 2.53728
Sb_ lennard-jones 225.946 3.93777
Te_ lennard-jones 200.281 3.98232
Al_ lennard-Jones 155.998 3.91105
Si_ lennard-Jones 155.998 3.80414
He lennard-jones 10.9 2.64
CH4_sp3 lennard-jones 148 3.73
CH3_sp3 lennard-jones 108.0 3.76
CH2_sp3 lennard-jones 56.0 3.96
CH_sp3 lennard-jones 17.0 4.67
C_sp3 lennard-jones 0.8 6.38
H_com lennard-jones 30 2.58
H_h2 lennard-jones 36.7 2.59
O_co2 lennard-jones 79.0 3.05
C_co2 lennard-jones 27.0 2.80
C_benz lennard-jones 30.70 3.60
H_benz lennard-jones 25.45 2.36
N_n2 lennard-jones 36.0 3.31
N_com none
Ow lennard-jones 89.633 3.097
N_dmf lennard-jones 80.0 3.2
Co_dmf lennard-jones 50.0 3.7
Cm_dmf lennard-jones 80.0 3.8
O_dmf lennard-jones 100.0 2.96
H_dmf lennard-jones 8.0 2.2
Ar lennard-jones 119.8 3.34
Kr lennard-jones 166.4 3.636
Xe lennard-jones 221.0 4.1
# general mixing rule for Lennard-Jones
Lorentz-Berthelot
Thanks.