News:

SMF - Just Installed!

Main Menu
Menu

Show posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.

Show posts Menu

Topics - SierraEcho

#1
Dear raspa community,

currently, I am working on simulations within cylindrical pores. Due to the fact that I have a cylinder inside a cartesian cell, the corners, filled with framework atoms, contribute quite a lot
to the overall volume of the unit cell.

I assume that this non-void volume highly increases the necessary calculation time because an adsorptiv molecule could be placed there which results in the calculation of the LJ-potential for all atoms within the surrounding area. Obviously, this move will be rejected due to the high potential energy.
Here comes the idea: would it be possible to reduce the calculation effort by using a block-pocket file (exemplary marked as red circles). The necessary key information actually is if the block-pocket criteria is checked before the LJ-potential is calculated for a given MC-move.

Many thanks for your help!
#2
General / High-Pressure Simulations
July 12, 2021, 03:01:33 PM
Dear RASPA-Community,

currently I am thinking to use RASPA in order to simulate some High-Pressure isotherms. Before starting with any kind of simulation in pores,
I thought it's a good idea to simulate both a rho-P (GCMC, supercritical) and a rho_T diagramm (Gibbs-Ensemble, subcritical).

To sum the results up: the subcritical results are good (as expected), but the high pressure results tend to have quite pronounced deviations (about 9% at 90 bar).

I was woundering about possible reasons for that, however I couldn't really come to a clear result. So my idea is that a: the mistake comes from the
use of the Peng-Robinson-EOS which is implemented as default EOS as far as I know b: at elevated pressure, it's not a valid assumption to neglect three-body
interactions anymore and/or the forcefield is not optimized for such high pressures. Is there anybody who conducted HP simulations and has an idea if
there is a possible solution or if a mistake of 9% is in spec at those elevated pressures?

Attached, you find my input file and a results plot.

Thanks for your input/help/ideas in advance :)

SimulationType                MonteCarlo
NumberOfCycles 50000
NumberOfInitializationCycles 50000
PrintEvery                    100

ContinueAfterCrash            no

ChargeMethod                  Ewald
Forcefield                    TraPPE
RemoveAtomNumberCodeFromLabel yes
Cutoff 12.8
EwaldPrecision                1e-6

Box 0
BoxLengths 30 30 30
ExternalTemperature 298
ExternalPressure 9e6

Movies no
WriteMoviesEvery 10000

Component 0 MoleculeName             methane
            StartingBead             0
            MolFraction              1
            MoleculeDefinition       TraPPE
            IdealGasRosenbluthWeight 1
            TranslationProbability   1
            RotationProbability      1
            ReinsertionProbability   1
            SwapProbability          1
            CreateNumberOfMolecules  0
            WidomProbability         0