Dear Dr. David Dubbeldam
I met something wrong when I studied the effect of flexibility of MOFs on gas separation. There was a segmentation fault occuring in my result when the pressure ranges from 0.1 bar to 10 bar.
_cell_length_a: 16.733000
_cell_length_b: 13.038000
_cell_length_c: 6.812000
_cell_length_alpha: 90.000000
_cell_length_beta: 90.000000
_cell_length_gamma: 90.000000
_symmetry_space_group_name_Hall: -I 2 2a found space group: 347
_symmetry_space_group_name_H-M: I m c m found space group: 347
_symmetry_Int_Tables_number: 343
space group found from symmetry elements: 347 (nr elements: 16)
End reading cif-file
Number of bonds: 0 0 1
Shift all potentials
Writing Crash-file!: 0
/var/spool/torque/mom_priv/jobs/794.localhost.SC: line 16: 19513 Segmentation fault (core dumped) $RASPA_DIR/bin/simulate simulation.input
The MOFs proposed in the study are MIL-53 series, including MIL-53(Al), MIL-53(Cr) and so on. Refering to the example (IRMOF-1) you gave to us, I defined the information of framework. Taking MIL-53 (Cr) as example,
the cif file we defined is:
data_MIL-53ht
_audit_creation_method RASPA-1.0
_audit_creation_date 2011-3-9
_audit_author_name '?'
_citation_author_name 'C. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier, D. Louer, and G. Ferey'
_citation_title 'Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or Cr-III(OH).{O2C-C6H4-CO2}.{HO2C-C6H4-CO2H}(x).H2Oy'
_citation_journal_abbrev 'J. Am. Chem. Soc.'
_citation_journal_volume 124
_citation_journal_number 45
_citation_page_first 13519
_citation_page_last 13526
_citation_year 2002
_cell_length_a 16.733
_cell_length_b 13.038
_cell_length_c 6.812
_cell_angle_alpha 90
_cell_angle_beta 90
_cell_angle_gamma 90
_cell_volume 1486.14
_symmetry_cell_setting orthorhombic
_symmetry_space_group_name_Hall '-I 2 2a'
_symmetry_space_group_name_H-M 'I m c m'
_symmetry_Int_Tables_number 74
loop_
_symmetry_equiv_pos_as_xyz
'x,y,z'
'-x+1/2,y,-z'
'x+1/2,-y,-z'
'-x,-y,z'
'-x,-y,-z'
'x+1/2,-y,z'
'-x+1/2,y,z'
'x,y,-z'
'x+1/2,y+1/2,z+1/2'
'-x,y+1/2,-z+1/2'
'x,-y+1/2,-z+1/2'
'-x+1/2,-y+1/2,z+1/2'
'-x+1/2,-y+1/2,-z+1/2'
'x,-y+1/2,z+1/2'
'-x,y+1/2,z+1/2'
'x+1/2,y+1/2,-z+1/2'
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_charge
Cr1 Cr 0.25000 0.75000 0.25 0.574
O1 O 0.25000 0.686 0 -0.486
O2 O -0.168 0.161 0.167 -0.211
C3 C -0.033 0.032 0.179 -0.073
C2 C -0.066 0.063 0 -0.043
C1 C -0.137 0.132 0 0.083
Ho1 H 0.25000 0.611 0 0.121
H1 H -0.060 0.058 0.329 0.035
The structure as well as the corresponding atom names are shown in the attach file, named MIL-53(Cr)ht.bmp
The flexiblity of framework was defined as follow:
#CoreShells bond BondDipoles UreyBradley bend inv tors improper-torsion bond/bond bond/bend bend/bend stretch/torsion bend/torsion
0 5 0 0 7 0 8 3 0 0 0 0 0
#bond stretch atom n1-n2, equilibrium distance, bondforce-constant
C3 H1 HARMONIC_BOND 366001.13136396 0.95
C3 C3 HARMONIC_BOND 483413.91047488 1.36
C2 C3 HARMONIC_BOND 483413.91047488 1.36
C1 C2 HARMONIC_BOND 353750.919316375 1.42
O2 C1 HARMONIC_BOND 543840.64928424 1.25
#bond bending atom n1-n2-n3, equilibrium angle, bondforce-constant
C1 C2 C3 HARMONIC_BEND 34926.5543205787 120.0
C2 C3 H1 HARMONIC_BEND 37263.15559911 120.0
C3 C3 H1 HARMONIC_BEND 37263.15559911 120.0
C3 C2 C3 HARMONIC_BEND 90640.10821404 120.0
C3 C3 C2 HARMONIC_BEND 90640.10821404 120.0
O2 C1 O2 HARMONIC_BEND 135960.162321060 130.0
O2 C1 C2 HARMONIC_BEND 54882.4848123699 115.0
#torsion atom n1-n2-n3-n4,
O2 C1 C2 C3 TRAPPE_DIHEDRAL 0.0 0.0 1258.890391861 0.0
C1 C2 C3 H1 TRAPPE_DIHEDRAL 0.0 0.0 1510.668470234 0.0
C1 C2 C3 C3 TRAPPE_DIHEDRAL 0.0 0.0 1510.668470234 0.0
H1 C3 C3 H1 TRAPPE_DIHEDRAL 0.0 0.0 1510.668470234 0.0
C2 C3 C3 H1 TRAPPE_DIHEDRAL 0.0 0.0 1510.668470234 0.0
C2 C3 C3 C2 TRAPPE_DIHEDRAL 0.0 0.0 1510.668470234 0.0
H1 C3 C2 C3 TRAPPE_DIHEDRAL 0.0 0.0 1510.668470234 0.0
C3 C2 C3 C3 TRAPPE_DIHEDRAL 0.0 0.0 1510.668470234 0.0
#improper torsion atom n1-n2-n3-n4,
C2 C1 O2 O2 TRAPPE_IMPROPER_DIHEDRAL 0.0 0.0 5035.561567446 0.0
C3 C2 C3 C1 TRAPPE_IMPROPER_DIHEDRAL 0.0 0.0 5035.561567446 0.0
C2 C3 C3 H1 TRAPPE_IMPROPER_DIHEDRAL 0.0 0.0 186.3157779955 0.0
There is a question here: Is it necessary to define the bond, bend, torsion information between Cr(III) and surrounding O or C? And how to obtain these information and change them into the form that RASPA can identify
The force_field_mixing_rules.def file was defined as follow:
# general rule for shifted vs truncated
shifted
# general rule tailcorrections
no
# number of defined interactions
28
# type interaction
Al_ Lennard-jones 254.09 4.01
Br_ Lennard-jones 126.29 3.73
C_ Lennard-jones 52.83 3.43
Ca_ Lennard-jones 119.75 3.03
Cl_ Lennard-jones 114.21 3.52
Cr_ Lennard-jones 7.55 2.69
F_ Lennard-jones 25.16 3
Fe_ Lennard-jones 6.54 2.59
Ga_ Lennard-jones 208.81 3.9
H_ Lennard-jones 22.14 2.57
In_ Lennard-jones 301.39 3.98
N_ Lennard-jones 34.72 3.26
O_ Lennard-jones 30.19 3.12
Os_ Lennard-jones 18.62 2.78
V_ Lennard-jones 8.05 2.8
CH4_sp3 lennard-jones 148.0 3.72
CH3_sp3 lennard-jones 98 3.76
CH2_sp3 lennard-jones 46 3.96
CH_sp3 lennard-jones 17.0 4.67
C_sp3 lennard-jones 0.8 6.38
O_co2 lennard-jones 79 3.05
C_co2 lennard-jones 27.0 2.8
Ow lennard-jones 81.9 3.16
Hw lennard-jones 0 0
Lw lennard-jones 0 0
S_S lennard-jones 122 3.6
H_S lennard-jones 50 2.5
M_S lennard-jones 0 0
# general mixing rule for Lennard-Jones
Lorentz-Berthelot
The pseudo_atoms.def file was defined as follow:
#number of pseudo atoms
23
#type print as chem oxidation mass charge polarization B-factor radii connectivity anisotropic anisotropic-type tinker-type
Cr1 yes Zn Zn 0 65.37 0.574 0 1.0 1.6 0 0 relative 0
O1 yes O O 0 15.9994 -0.486 0 1.0 0.68 2 0 relative 0
O2 yes O O 0 15.9994 -0.211 0 1.0 0.68 2 0 relative 0
C3 yes C C 0 12.0107 -0.073 0 1.0 0.720 0 0 relative 0
C2 yes C C 0 12.0107 -0.043 0 1.0 0.720 0 0 relative 0
C1 yes C C 0 12.0107 0.083 0 1.0 0.720 0 0 relative 0
Ho1 yes H H 0 1.00794 0.121 0 1.0 0.320 0 0 relative 0
H1 yes H H 0 1.00794 0.035 0 1.0 0.320 0 0 relative 0
He yes He He 0 4.002602 0 0 1.0 1 0 0 relative 0
CH4_sp3 yes C C 0 16.04246 0 0 1.0 1 0 0 relative 0
CH3_sp3 yes C C 0 15.03452 0 0 1.0 1 0 0 relative 0
CH2_sp3 yes C C 0 14.02658 0 0 1.0 1 0 0 relative 0
CH_sp3 yes C C 0 13.01864 0 0 1.0 1 0 0 relative 0
CH2_sp2 yes C C 0 14.02658 0 0 1.0 1 0 0 relative 0
C_sp3 yes C C 0 12 0 0 1.0 1 0 0 relative 0
C_co2 yes C C 0 12.0107 0.7 1.508 1.0 0.720 0 0 relative 0
O_co2 yes O O 0 15.9994 -0.35 0.9475 1.0 0.68 0 0 relative 0
Ow yes O O 0 15.9994 0 0 1.0 0.5 2 0 relative 0
Hw yes H H 0 1.00794 0.524 0 1.0 1 1 0 relative 0
Lw no L - 0 0 -1.048 0 1.0 1 1 0 relative 0
S_S yes S S 0 32.06 0 0 1.0 1 0 0 relative 0
H_S yes H H 0 1 0.21 0 1.0 1 0 0 relative 0
M_S no M - 0 0 -0.42 0 1.0 1 0 0 relative 0
No extra force field defined in the force_field.def
As for the input file, we used the hybrid MCMD method to calculate the adsorption capacity of CH4 in MIL-53(Cr)
SimulationType MonteCarlo
NumberOfCycles 100000
NumberOfInitializationCycles 100000
PrintEvery 5000
RestartFile no
ContinueAfterCrash no
WriteBinaryRestartFileEvery 5000
ChargeMethod Ewald
Forcefield MIL-53-Cr-ht-pri
CutOffVDW 12.5
RemoveAtomNumberCodeFromLabel yes
Framework 0
FrameworkName MIL-53-Cr-ht-pri
ChargeFromChargeEquilibration yes
UnitCells 2 2 4
HeliumVoidFraction 0.5093
FrameworkDefinitions MIL-53-Cr-ht-pri
ExternalTemperature 298.15
ExternalPressure 61000
FlexibleFramework yes
HybridMCMDMoveProbability 1.0
Movies yes
WriteMoviesEvery 5000
Component 0 MoleculeName CH4
StartingBead 0
MoleculeDefinition gwq_trappe
TranslationProbability 1.0
RotationProbability 1.0
SwapProbability 1.0
RegrowProbability 1.0
IdealGasRosenbluthWeight 1.0
CreateNumberOfMolecules 0
I would be very very grateful if you can give me some suggestions. ;D ;D ;D ;D ;D ;D
In addition, I'd like to ask you some questions:
In the first example listed in the Advanced Example, you said the adsorption of CO2 in a totally flexible IRMOF-1 using a hybrid MC and MD simulation in μVT ensemble . However, you listed another example to illustrate the CO2 adsorption in flexible IRMOF-1 in osmotic ensemble.
1. If I want to obtain the gas separation capability of a flexible MOF, which method is better for us to use? In which condition should I used the instruction of the first example, and in which condition I should use the instruction in the second example.
2. According to Sven M. J. Rogge (Adv. Theory Simul. 2019, 2, 1800177, doi: 10.1002/adts.201800177), the hybrid MCMD is the best way to predict the adsorption behaviors in a flexible MOF in a restricted osmotic ensemble, which seems to be the combination of the first and second example (Scheme 4). In that work, he did a MD at the very beginning, but in the case of hybridMCMD method in RASPA, it seems no MD relative defination involved. So, how does it manange to do MD simulation.
[/color]
I am really looking forward to your respond ;D ;D ;D
Sincere
Monica
I met something wrong when I studied the effect of flexibility of MOFs on gas separation. There was a segmentation fault occuring in my result when the pressure ranges from 0.1 bar to 10 bar.
_cell_length_a: 16.733000
_cell_length_b: 13.038000
_cell_length_c: 6.812000
_cell_length_alpha: 90.000000
_cell_length_beta: 90.000000
_cell_length_gamma: 90.000000
_symmetry_space_group_name_Hall: -I 2 2a found space group: 347
_symmetry_space_group_name_H-M: I m c m found space group: 347
_symmetry_Int_Tables_number: 343
space group found from symmetry elements: 347 (nr elements: 16)
End reading cif-file
Number of bonds: 0 0 1
Shift all potentials
Writing Crash-file!: 0
/var/spool/torque/mom_priv/jobs/794.localhost.SC: line 16: 19513 Segmentation fault (core dumped) $RASPA_DIR/bin/simulate simulation.input
The MOFs proposed in the study are MIL-53 series, including MIL-53(Al), MIL-53(Cr) and so on. Refering to the example (IRMOF-1) you gave to us, I defined the information of framework. Taking MIL-53 (Cr) as example,
the cif file we defined is:
data_MIL-53ht
_audit_creation_method RASPA-1.0
_audit_creation_date 2011-3-9
_audit_author_name '?'
_citation_author_name 'C. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier, D. Louer, and G. Ferey'
_citation_title 'Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or Cr-III(OH).{O2C-C6H4-CO2}.{HO2C-C6H4-CO2H}(x).H2Oy'
_citation_journal_abbrev 'J. Am. Chem. Soc.'
_citation_journal_volume 124
_citation_journal_number 45
_citation_page_first 13519
_citation_page_last 13526
_citation_year 2002
_cell_length_a 16.733
_cell_length_b 13.038
_cell_length_c 6.812
_cell_angle_alpha 90
_cell_angle_beta 90
_cell_angle_gamma 90
_cell_volume 1486.14
_symmetry_cell_setting orthorhombic
_symmetry_space_group_name_Hall '-I 2 2a'
_symmetry_space_group_name_H-M 'I m c m'
_symmetry_Int_Tables_number 74
loop_
_symmetry_equiv_pos_as_xyz
'x,y,z'
'-x+1/2,y,-z'
'x+1/2,-y,-z'
'-x,-y,z'
'-x,-y,-z'
'x+1/2,-y,z'
'-x+1/2,y,z'
'x,y,-z'
'x+1/2,y+1/2,z+1/2'
'-x,y+1/2,-z+1/2'
'x,-y+1/2,-z+1/2'
'-x+1/2,-y+1/2,z+1/2'
'-x+1/2,-y+1/2,-z+1/2'
'x,-y+1/2,z+1/2'
'-x,y+1/2,z+1/2'
'x+1/2,y+1/2,-z+1/2'
loop_
_atom_site_label
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_charge
Cr1 Cr 0.25000 0.75000 0.25 0.574
O1 O 0.25000 0.686 0 -0.486
O2 O -0.168 0.161 0.167 -0.211
C3 C -0.033 0.032 0.179 -0.073
C2 C -0.066 0.063 0 -0.043
C1 C -0.137 0.132 0 0.083
Ho1 H 0.25000 0.611 0 0.121
H1 H -0.060 0.058 0.329 0.035
The structure as well as the corresponding atom names are shown in the attach file, named MIL-53(Cr)ht.bmp
The flexiblity of framework was defined as follow:
#CoreShells bond BondDipoles UreyBradley bend inv tors improper-torsion bond/bond bond/bend bend/bend stretch/torsion bend/torsion
0 5 0 0 7 0 8 3 0 0 0 0 0
#bond stretch atom n1-n2, equilibrium distance, bondforce-constant
C3 H1 HARMONIC_BOND 366001.13136396 0.95
C3 C3 HARMONIC_BOND 483413.91047488 1.36
C2 C3 HARMONIC_BOND 483413.91047488 1.36
C1 C2 HARMONIC_BOND 353750.919316375 1.42
O2 C1 HARMONIC_BOND 543840.64928424 1.25
#bond bending atom n1-n2-n3, equilibrium angle, bondforce-constant
C1 C2 C3 HARMONIC_BEND 34926.5543205787 120.0
C2 C3 H1 HARMONIC_BEND 37263.15559911 120.0
C3 C3 H1 HARMONIC_BEND 37263.15559911 120.0
C3 C2 C3 HARMONIC_BEND 90640.10821404 120.0
C3 C3 C2 HARMONIC_BEND 90640.10821404 120.0
O2 C1 O2 HARMONIC_BEND 135960.162321060 130.0
O2 C1 C2 HARMONIC_BEND 54882.4848123699 115.0
#torsion atom n1-n2-n3-n4,
O2 C1 C2 C3 TRAPPE_DIHEDRAL 0.0 0.0 1258.890391861 0.0
C1 C2 C3 H1 TRAPPE_DIHEDRAL 0.0 0.0 1510.668470234 0.0
C1 C2 C3 C3 TRAPPE_DIHEDRAL 0.0 0.0 1510.668470234 0.0
H1 C3 C3 H1 TRAPPE_DIHEDRAL 0.0 0.0 1510.668470234 0.0
C2 C3 C3 H1 TRAPPE_DIHEDRAL 0.0 0.0 1510.668470234 0.0
C2 C3 C3 C2 TRAPPE_DIHEDRAL 0.0 0.0 1510.668470234 0.0
H1 C3 C2 C3 TRAPPE_DIHEDRAL 0.0 0.0 1510.668470234 0.0
C3 C2 C3 C3 TRAPPE_DIHEDRAL 0.0 0.0 1510.668470234 0.0
#improper torsion atom n1-n2-n3-n4,
C2 C1 O2 O2 TRAPPE_IMPROPER_DIHEDRAL 0.0 0.0 5035.561567446 0.0
C3 C2 C3 C1 TRAPPE_IMPROPER_DIHEDRAL 0.0 0.0 5035.561567446 0.0
C2 C3 C3 H1 TRAPPE_IMPROPER_DIHEDRAL 0.0 0.0 186.3157779955 0.0
There is a question here: Is it necessary to define the bond, bend, torsion information between Cr(III) and surrounding O or C? And how to obtain these information and change them into the form that RASPA can identify
The force_field_mixing_rules.def file was defined as follow:
# general rule for shifted vs truncated
shifted
# general rule tailcorrections
no
# number of defined interactions
28
# type interaction
Al_ Lennard-jones 254.09 4.01
Br_ Lennard-jones 126.29 3.73
C_ Lennard-jones 52.83 3.43
Ca_ Lennard-jones 119.75 3.03
Cl_ Lennard-jones 114.21 3.52
Cr_ Lennard-jones 7.55 2.69
F_ Lennard-jones 25.16 3
Fe_ Lennard-jones 6.54 2.59
Ga_ Lennard-jones 208.81 3.9
H_ Lennard-jones 22.14 2.57
In_ Lennard-jones 301.39 3.98
N_ Lennard-jones 34.72 3.26
O_ Lennard-jones 30.19 3.12
Os_ Lennard-jones 18.62 2.78
V_ Lennard-jones 8.05 2.8
CH4_sp3 lennard-jones 148.0 3.72
CH3_sp3 lennard-jones 98 3.76
CH2_sp3 lennard-jones 46 3.96
CH_sp3 lennard-jones 17.0 4.67
C_sp3 lennard-jones 0.8 6.38
O_co2 lennard-jones 79 3.05
C_co2 lennard-jones 27.0 2.8
Ow lennard-jones 81.9 3.16
Hw lennard-jones 0 0
Lw lennard-jones 0 0
S_S lennard-jones 122 3.6
H_S lennard-jones 50 2.5
M_S lennard-jones 0 0
# general mixing rule for Lennard-Jones
Lorentz-Berthelot
The pseudo_atoms.def file was defined as follow:
#number of pseudo atoms
23
#type print as chem oxidation mass charge polarization B-factor radii connectivity anisotropic anisotropic-type tinker-type
Cr1 yes Zn Zn 0 65.37 0.574 0 1.0 1.6 0 0 relative 0
O1 yes O O 0 15.9994 -0.486 0 1.0 0.68 2 0 relative 0
O2 yes O O 0 15.9994 -0.211 0 1.0 0.68 2 0 relative 0
C3 yes C C 0 12.0107 -0.073 0 1.0 0.720 0 0 relative 0
C2 yes C C 0 12.0107 -0.043 0 1.0 0.720 0 0 relative 0
C1 yes C C 0 12.0107 0.083 0 1.0 0.720 0 0 relative 0
Ho1 yes H H 0 1.00794 0.121 0 1.0 0.320 0 0 relative 0
H1 yes H H 0 1.00794 0.035 0 1.0 0.320 0 0 relative 0
He yes He He 0 4.002602 0 0 1.0 1 0 0 relative 0
CH4_sp3 yes C C 0 16.04246 0 0 1.0 1 0 0 relative 0
CH3_sp3 yes C C 0 15.03452 0 0 1.0 1 0 0 relative 0
CH2_sp3 yes C C 0 14.02658 0 0 1.0 1 0 0 relative 0
CH_sp3 yes C C 0 13.01864 0 0 1.0 1 0 0 relative 0
CH2_sp2 yes C C 0 14.02658 0 0 1.0 1 0 0 relative 0
C_sp3 yes C C 0 12 0 0 1.0 1 0 0 relative 0
C_co2 yes C C 0 12.0107 0.7 1.508 1.0 0.720 0 0 relative 0
O_co2 yes O O 0 15.9994 -0.35 0.9475 1.0 0.68 0 0 relative 0
Ow yes O O 0 15.9994 0 0 1.0 0.5 2 0 relative 0
Hw yes H H 0 1.00794 0.524 0 1.0 1 1 0 relative 0
Lw no L - 0 0 -1.048 0 1.0 1 1 0 relative 0
S_S yes S S 0 32.06 0 0 1.0 1 0 0 relative 0
H_S yes H H 0 1 0.21 0 1.0 1 0 0 relative 0
M_S no M - 0 0 -0.42 0 1.0 1 0 0 relative 0
No extra force field defined in the force_field.def
As for the input file, we used the hybrid MCMD method to calculate the adsorption capacity of CH4 in MIL-53(Cr)
SimulationType MonteCarlo
NumberOfCycles 100000
NumberOfInitializationCycles 100000
PrintEvery 5000
RestartFile no
ContinueAfterCrash no
WriteBinaryRestartFileEvery 5000
ChargeMethod Ewald
Forcefield MIL-53-Cr-ht-pri
CutOffVDW 12.5
RemoveAtomNumberCodeFromLabel yes
Framework 0
FrameworkName MIL-53-Cr-ht-pri
ChargeFromChargeEquilibration yes
UnitCells 2 2 4
HeliumVoidFraction 0.5093
FrameworkDefinitions MIL-53-Cr-ht-pri
ExternalTemperature 298.15
ExternalPressure 61000
FlexibleFramework yes
HybridMCMDMoveProbability 1.0
Movies yes
WriteMoviesEvery 5000
Component 0 MoleculeName CH4
StartingBead 0
MoleculeDefinition gwq_trappe
TranslationProbability 1.0
RotationProbability 1.0
SwapProbability 1.0
RegrowProbability 1.0
IdealGasRosenbluthWeight 1.0
CreateNumberOfMolecules 0
I would be very very grateful if you can give me some suggestions. ;D ;D ;D ;D ;D ;D
In addition, I'd like to ask you some questions:
In the first example listed in the Advanced Example, you said the adsorption of CO2 in a totally flexible IRMOF-1 using a hybrid MC and MD simulation in μVT ensemble . However, you listed another example to illustrate the CO2 adsorption in flexible IRMOF-1 in osmotic ensemble.
1. If I want to obtain the gas separation capability of a flexible MOF, which method is better for us to use? In which condition should I used the instruction of the first example, and in which condition I should use the instruction in the second example.
2. According to Sven M. J. Rogge (Adv. Theory Simul. 2019, 2, 1800177, doi: 10.1002/adts.201800177), the hybrid MCMD is the best way to predict the adsorption behaviors in a flexible MOF in a restricted osmotic ensemble, which seems to be the combination of the first and second example (Scheme 4). In that work, he did a MD at the very beginning, but in the case of hybridMCMD method in RASPA, it seems no MD relative defination involved. So, how does it manange to do MD simulation.
[/color]
I am really looking forward to your respond ;D ;D ;D
Sincere
Monica