<h2> Using the Balanset-1A Instrument </h2>
<h3> Getting the Equipment Ready </h3>
<ul>
<li> accelerometers, laser rpm sensor, mounting stand, software application, and additional tools. </li>
<li> Set up the instrument and connect it to your computer via USB. Verify that the software is correctly installed. </li>
</ul>
<h3> Mounting the Sensors </h3>
<ul>
<li> Fix the accelerometers securely to the machine's structure in locations where vibrations are most prominent, ideally near the bearings. </li>
<li> Aim the optical rpm sensor at the rotating shaft and apply a reflective strip to the shaft for phase angle data acquisition. </li>
</ul>
<h3> Starting the Program </h3>
<ul>
<li> Launch the Balanset software on your computer. </li>
<li> Configure the software for either single-plane or two-plane balancing, based on the rotor's characteristics and the desired outcome. </li>
</ul>
<h3> </h3>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/2-Camera_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/2-Camera_01.png" alt="2-Camera_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<ul>
<li> Bring the rotor to its normal operating rotational frequency. </li>
<li> The program will record the vibration amplitude, rpm, and phase, providing a baseline measurement of the existing imbalance. </li>
</ul>
<h3> Trial Weight Installation </h3>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/3-Camera-2_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/3-Camera-2_01.png" alt="3-Camera-2_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<ul>
<li> Bring the rotor to a standstill and affix a trial weight at a predetermined point on the rotor, specifying its mass in the software (typically in grams). </li>
<li> Resume rotor operation, and the program will capture the resulting changes in vibration amplitude and phase. </li>
</ul>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/5-Camera_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/5-Camera_01.png" alt="5-Camera_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<h3> Determining the Corrective Mass </h3>
<ul>
<li> Using the acquired measurements, the program automatically determines the required corrective weight's mass and angular position. </li>
<li> These parameters are displayed on the screen as numerical data and graphs. </li>
</ul>
<a href="https://vibromera.eu/wp-content/uploads/2024/02/Bs1ManualEngV156-May2023-10448629.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/02/Bs1ManualEngV156-May2023-10448629.png" alt="Bs1 Manual" style="width: 30%; display: block; margin-bottom: 10px;">
</a>
<h3> Installing the Correction Weight </h3>
<ul>
<li> Attach the computed compensating weight to the rotor as indicated by the software's output. </li>
<li> You can conduct interim measurements to confirm that the imbalance is decreasing as expected. </li>
</ul>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/1-Camera-2_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/1-Camera-2_01.png" alt="1-Camera-2_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<h3> Final Check and Balance Confirmation </h3>
<ul>
<li> With the compensating weight attached, operate the rotor and assess the level of any residual vibration. </li>
<li> If the measured vibration falls within the tolerance defined by ISO 1940, the balancing process is considered successful. </li>
<li> If the vibration level remains high, repeat the process with further weight adjustments. </li>
</ul>
<h3> Creating a Balancing Report </h3>
<ul>
<li> All balancing results are logged and archived within the software, from which you can produce a printable report summarizing the vibration levels, compensating weight, and its installation position. </li>
</ul>
<h3> Post-Balancing Checklist </h3>
<ul>
<li> Verify the secure attachment of all balancing weights and measurement sensors. </li>
<li> Ensure the rotor rotates smoothly and without excessive noise. </li>
<li> If the rotor is part of a complex mechanism, verify the proper interaction of all its components. </li>
</ul>
<p> By implementing this method, you can effectively eliminate imbalance, reduce vibration levels, and increase the lifespan of the machinery. </p>
Instagram: https://www.instagram.com/vibromera_ou/
Youtube : https://youtu.be/guA6XJ-ArZM?si=vmkuX7RILzKBl0zL
Our website about <a href="https://vibromera.eu
"> Sheave balancing </a>
Machinio: https://www.machinio.com/listings/98380186-portable-balancer-vibration-analyzer-balanset-1a-full-kit-in-portugal
Facebook: https://www.facebook.com/marketplace/item/350151228150722
<h3> Getting the Equipment Ready </h3>
<ul>
<li> accelerometers, laser rpm sensor, mounting stand, software application, and additional tools. </li>
<li> Set up the instrument and connect it to your computer via USB. Verify that the software is correctly installed. </li>
</ul>
<h3> Mounting the Sensors </h3>
<ul>
<li> Fix the accelerometers securely to the machine's structure in locations where vibrations are most prominent, ideally near the bearings. </li>
<li> Aim the optical rpm sensor at the rotating shaft and apply a reflective strip to the shaft for phase angle data acquisition. </li>
</ul>
<h3> Starting the Program </h3>
<ul>
<li> Launch the Balanset software on your computer. </li>
<li> Configure the software for either single-plane or two-plane balancing, based on the rotor's characteristics and the desired outcome. </li>
</ul>
<h3> </h3>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/2-Camera_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/2-Camera_01.png" alt="2-Camera_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<ul>
<li> Bring the rotor to its normal operating rotational frequency. </li>
<li> The program will record the vibration amplitude, rpm, and phase, providing a baseline measurement of the existing imbalance. </li>
</ul>
<h3> Trial Weight Installation </h3>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/3-Camera-2_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/3-Camera-2_01.png" alt="3-Camera-2_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<ul>
<li> Bring the rotor to a standstill and affix a trial weight at a predetermined point on the rotor, specifying its mass in the software (typically in grams). </li>
<li> Resume rotor operation, and the program will capture the resulting changes in vibration amplitude and phase. </li>
</ul>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/5-Camera_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/5-Camera_01.png" alt="5-Camera_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<h3> Determining the Corrective Mass </h3>
<ul>
<li> Using the acquired measurements, the program automatically determines the required corrective weight's mass and angular position. </li>
<li> These parameters are displayed on the screen as numerical data and graphs. </li>
</ul>
<a href="https://vibromera.eu/wp-content/uploads/2024/02/Bs1ManualEngV156-May2023-10448629.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/02/Bs1ManualEngV156-May2023-10448629.png" alt="Bs1 Manual" style="width: 30%; display: block; margin-bottom: 10px;">
</a>
<h3> Installing the Correction Weight </h3>
<ul>
<li> Attach the computed compensating weight to the rotor as indicated by the software's output. </li>
<li> You can conduct interim measurements to confirm that the imbalance is decreasing as expected. </li>
</ul>
<a href="https://vibromera.eu/wp-content/uploads/2024/11/1-Camera-2_01.png" target="_blank">
<img src="https://vibromera.eu/wp-content/uploads/2024/11/1-Camera-2_01.png" alt="1-Camera-2_01" style="width: 50%; display: block; margin-bottom: 10px;">
</a>
<h3> Final Check and Balance Confirmation </h3>
<ul>
<li> With the compensating weight attached, operate the rotor and assess the level of any residual vibration. </li>
<li> If the measured vibration falls within the tolerance defined by ISO 1940, the balancing process is considered successful. </li>
<li> If the vibration level remains high, repeat the process with further weight adjustments. </li>
</ul>
<h3> Creating a Balancing Report </h3>
<ul>
<li> All balancing results are logged and archived within the software, from which you can produce a printable report summarizing the vibration levels, compensating weight, and its installation position. </li>
</ul>
<h3> Post-Balancing Checklist </h3>
<ul>
<li> Verify the secure attachment of all balancing weights and measurement sensors. </li>
<li> Ensure the rotor rotates smoothly and without excessive noise. </li>
<li> If the rotor is part of a complex mechanism, verify the proper interaction of all its components. </li>
</ul>
<p> By implementing this method, you can effectively eliminate imbalance, reduce vibration levels, and increase the lifespan of the machinery. </p>
Instagram: https://www.instagram.com/vibromera_ou/
Youtube : https://youtu.be/guA6XJ-ArZM?si=vmkuX7RILzKBl0zL
Our website about <a href="https://vibromera.eu
"> Sheave balancing </a>
Machinio: https://www.machinio.com/listings/98380186-portable-balancer-vibration-analyzer-balanset-1a-full-kit-in-portugal
Facebook: https://www.facebook.com/marketplace/item/350151228150722