News:

SMF - Just Installed!

Main Menu

different adsorption isotherms compare to literature

Started by Mozhdeh, July 17, 2019, 08:56:19 AM

Previous topic - Next topic

Mozhdeh

Dear all
I did some MC simulation to reproduce water adsorption isotherms on MOF-801 but results are not consistent at all. in the literature, water uptake at p/p0=0.2 is about 200 cm3/gr while mine is 0.5 cm3/gr. Molecule and force field definition is the same as literature. Partial charges were found beforehand using Qeq module and finalP1.cif file were used as the input cif. I also changed void fraction up to 0.9 but the impact is not so much! what did I miss? I appreciate any comment.
Regards

P. S. simulation file is as below:

SimulationType                MonteCarlo
NumberOfCycles                50000
NumberOfInitializationCycles  10000
PrintEvery                    10000
RestartFile                   no

chargemethod            Ewald
Forcefield                    GenericMOFs
UseChargesFromCIFFile         yes
cutoffvdw                     12.0
SymmetrizeFrameworkCharges    yes

Framework 0
FrameworkName mof-801-p1
UnitCells 2 2 2
HeliumVoidFraction 0.49
ExternalTemperature 298
ExternalPressure 3456

Component 0 MoleculeName             water
            MoleculeDefinition       TraPPE
            randomTranslationProbability   0.5
            RotationProbability      0.5
            ReinsertionProbability   0.5
            SwapProbability          1.0
            CreateNumberOfMolecules  0



David Dubbeldam

Are you comparing your simulation to other simulations or your simulations to experiments?
For the latter you need a bigger picture view and compare the simulated isotherm to the experimental one. Usually at some pressure the isotherm shoots up due to water-water clustering, but the details of where that happens depends on many factors (especially defects).
Also, the water-model is never perfect, nor is the force field in general.

Mozhdeh

Dear Dr. Dubbeldam
Thanks for the kind response. Actually I compare it with both simulated and experimental results which are consistent in previous literature. I compare my output with the examples of RASPA2 and I noticed that there were no more than 2 number of adsorbent in each cycle, while for example in the Adsorption_of_CO2_in_Flexible_IRMOF-1_Fixed_Volume, number of adsorbents in the last cycle is 39 and the excess loading is 140.3574056061 (avg. 158.7275906778) [cm^3 STP/g]. So I think there is something inhibiting a proper MC simulation. Moreover, I used psuedo_atom.def file to neutralized the charge of water molecules, however the MOF itself has a net charge. So I used randomTranslationProbability   0.5 and ReinsertionProbability   0.0 , but in the MC moves, charges were created on the water molecules (Net charge: 0.964176 (F: 0.000176, A: 0.964, C: 0)).

Here is the properties calculated at the last cycle of my simulation:

[Init] Current cycle: 900000 out of 1000000
========================================================================================================

Net charge: 0.964176 (F: 0.000176, A: 0.964, C: 0)
Current Box:  35.66960   0.00000   0.00000 [A]
               0.00000  35.66960   0.00000 [A]
               0.00000   0.00000  35.66960 [A]
Box-lengths:  35.66960  35.66960  35.66960 Box-angles:   90.00000  90.00000  90.00000 [degrees]
Volume: 45383.15846 [A^3]

Loadings per component:
----------------------------------------------------------------------------------------------------------------------------------------------------
Component 0 (water), current number of integer/fractional/reaction molecules: 2/0/0, density:   1.31729 [kg/m^3]
   absolute adsorption:   0.25000 [mol/uc],         0.0420 [mol/kg],              0.7563 [mg/g]
                                                    0.9417 [cm^3 STP/g],          1.6402 [cm^3 STP/cm^3]
   excess adsorption:     0.25000 [mol/uc],         0.0420 [mol/kg],              0.7563 [mg/g]
                                                    0.9417 [cm^3 STP/g],          1.6402 [cm^3 STP/cm^3]
----------------------------------------------------------------------------------------------------------------------------------------------------
Degrees of freedom: 12 0 12 0
Number of Framework-atoms:   2624
Number of Adsorbates:           2 (2 integer, 0 fractional, 0 reaction)
Number of Cations:              0 (0 integer, 0 fractional, 0 reaction

Current total potential energy:            -12224.3694682955 [K]
   Current Host-Host energy:                     0.0000000000 [K]
   Current Host-Adsorbate energy:           -14790.5805795910 [K]
   Current Host-Cation energy:                   0.0000000000 [K]
   Current Adsorbate-Adsorbate energy:        2566.2111112939 [K]
   Current Cation-Cation energy:                 0.0000000000 [K]
   Current Adsorbate-Cation energy:              0.0000000000 [K]

WARNING: THE SYSTEM HAS A NET CHARGE



Mozhdeh

Dear all
I test the same MOF adsorption isotherm of N2 at 77 K which behaved normal


Current cycle: 40000 out of 50000
========================================================================================================

Net charge: 0.000176 (F: 0.000176, A: 0, C: 0)
Current Box:  35.66960   0.00000   0.00000 [A]   Average Box:  35.66960   0.00000   0.00000 [A]
               0.00000  35.66960   0.00000 [A]                  0.00000  35.66960   0.00000 [A]
               0.00000   0.00000  35.66960 [A]                  0.00000   0.00000  35.66960 [A]
Box-lengths:   35.66960  35.66960  35.66960 [A] Average:  35.66960  35.66960  35.66960 [A]
Box-angles:   90.00000  90.00000  90.00000 [degrees] Average:  90.00000  90.00000  90.00000 [degrees]
Volume: 45383.15846 [A^3] Average Volume: 45383.15846 [A^3]

Loadings per component:
----------------------------------------------------------------------------------------------------------------------------------------------------
Component 0 (N2), current number of integer/fractional/reaction molecules: 302/0/0 (avg. 298.25187), density: 309.54848 (avg. 305.70667) [kg/m^3]
   absolute adsorption:  37.75000 (avg.  37.28148) [mol/uc],   6.3438084017 (avg.   6.2650752004) [mol/kg], 177.7121497852 (avg. 175.5065588236) [mg/g]
                        142.1899676634 (avg. 140.4252435976) [cm^3 STP/g],  247.6738366201 (avg. 244.5999490094) [cm^3 STP/cm^3]
   excess adsorption:    37.7474627383 (avg.  37.1564835879) [mol/uc],   6.3433820202 (avg.   6.2440692123) [mol/kg], 177.7002053553 (avg. 174.9181079965) [mg/g]
                        142.1804107585 (avg. 139.9544158901) [cm^3 STP/g],  247.6571899091 (avg. 243.7798369677) [cm^3 STP/cm^3]
----------------------------------------------------------------------------------------------------------------------------------------------------
Degrees of freedom: 1510 0 1510 0
Number of Framework-atoms:   2624
Number of Adsorbates:         302  (302 integer, 0 fractional, 0 reaction)
Number of Cations:              0 (0 integer, 0 fractional, 0 reaction)

Current total potential energy:           -541892.7820463965 [K]  (avg.     -530686.6081954332)
   Current Host-Host energy:                     0.0000000000 [K]  (avg.           0.0000000000)
   Current Host-Adsorbate energy:          -484779.4158412396 [K]  (avg.     -476688.6897432785)
   Current Host-Cation energy:                   0.0000000000 [K]  (avg.           0.0000000000)
   Current Adsorbate-Adsorbate energy:      -57113.3662051579 [K]  (avg.      -53997.9184521721)
   Current Cation-Cation energy:                 0.0000000000 [K]  (avg.           0.0000000000)
   Current Adsorbate-Cation energy:              0.0000000000 [K]  (avg.           0.0000000000)

WARNING: THE SYSTEM HAS A NET CHARGE


So I think something wrong about the water, maybe the increased charge of it in the MC simulation. Any comment?
Best regards

David Dubbeldam

What do you mean with "there were no more than 2 number of adsorbent in each cycle", do you have multiple frameworks? do you mean "adsorbent" which is the framework, or "adsorbate" which means the molecules inside the framework.
"So I think something wrong about the water, maybe the increased charge of it in the MC simulation.", have you tried making it charge-neutral?